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ABSTRACT

Motivated by a need within the aerospace industry to detect and characterize degrada-

tion in the insulation of onboard wires, this thesis reports testing of several extant methods

and development of novel capacitive sensors. This work focuses on measuring the electrical

parameters resistance and capacitance that are directly related to the material parameters

conductivity and permittivity, respectively, of the insulation. It is shown that the measured

electrical parameters successfully indicate degradation in the wire insulation.

Insulation resistance tests were performed on 17 wire samples, removed from various loca-

tions on a retired aircraft, and compared with those conducted on pristine wire samples, in

order to assess any change in conductivity exhibited by degraded insulation. Timed resistance

tests were also performed to determine the dielectric absorption of the insulation. Curved

patch-electrode sensors were applied in order to measure the capacitance and dissipation factor

of the same wires. Results from the resistive and capacitive tests both identified wire samples

that were apparently significantly degraded, as indicated qualitatively by visual inspection.

Further, a novel cylindrical interdigital capacitive sensor was developed. The interdigital

sensor is designed with the goal of achieving a good signal-to-noise ratio, the lowest instrument

error possible at 1 MHz, full circumferential coverage of the wire, and the ability to adjust

the penetration depth of the electric field into the insulation layer by adjusting the separation

of the sensor digits. With the aim, ultimately, of quantitative measurement of insulation

complex permittivity, a numerical model was developed using a cylindrical Green’s function

and the Method of Moments to calculate theoretically the capacitance of the interdigital sensor.

Benchmark experiments were carried out on large-scale dielectric-coated conductive cylinders

to test the validity of the model. Experimental results agreed with measured results to within

5% for sensor configurations with 22 and 30 digits of each polarization, tested on insulation

polymers acetal copolymer, acrylic and polytetrafluoroethylene. A design method by which
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the penetration depth of the electric field into the insulation layer may be optimized is also

introduced.

Plans for future work, to develop interdigital capacitive sensors with a convenient hand-held

clamp design for in-situ testing of aircraft wiring insulation, are also presented.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

All insulated wires are subject to a variety of degradation modes, such as moisture, extreme

temperatures, and mechanical stress. Failure of these wires in critical systems, such as aircraft

and nuclear reactors, as a result of insulation degradation can be potentially hazardous and even

fatal as these wires can transmit power, navigation and control signals. Although many wire

testers and other nondestructive evaluation (NDE) techniques are commercially available, few

are designed to actually characterize the insulation with the cylindrical geometry incorporated.

It is purposed through the research presented in this thesis to develop a capacitive sensor to

characterize wire insulation that builds from the foundation set by these extant techniques

while incorporating the significant advantages of capacitive sensors developed previously for

other applications. To achieve this, experiments were performed to measure and compare the

resistance and capacitance of wire insulation, electrical parameters which are directly related

to the material parameters conductivity and permittivity of the insulation, to determine the

effectiveness of insulation characterization via the respective measurement techniques.

1.2 Literature survey

1.2.1 Extant methods of insulation characterization

A wire is essentially comprised of two components - a conductor and an insulator - which

means that there are two types of problems, or faults, that may eventually occur in a wire

over time. A common method of detecting conductor faults, or “hard faults”, is known as

time-domain reflectometry (TDR), whereby a voltage pulse is transmitted along the central

conductor of the wire and the reflection pulse return time and magnitude are used to determine
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the location and impedance type of the discontinuity [1]. For insulation faults, known as “soft

faults”, a similar form of testing is used and is known as partial discharge (PD) analysis, which

is used to detect and locate regions of insulation that are at risk of suffering electrical arcing

damage. PD analysis works by applying a high voltage pulse on the conductor, which partially

discharges its energy in degraded regions, the occurrence of which partially reflects the incident

pulse and can be used to locate and characterize the soft faults [1].

Another common soft fault detector is an insulation resistance (or leakage current) tester

that simply works by applying a high direct-current voltage to the conductor and measuring

the leakage current through the insulation at various points along the wire. Factors such as

mechanical damage, vibration, extreme temperatures, dirt, oil, corrosive vapors, and humidity

are all known to decrease the resistance of various insulating media causing them to become

more conductive [2]. All of these techniques suffer from the significant disadvantage of requiring

access to the central conductor, which may not be possible, and applying to it a high voltage,

which may be dangerous and may promote further degradation to the insulation under test.

1.2.2 Capacitive sensing

Capacitive sensing is ideally suited for characterizing dielectric materials due to the lin-

ear relationship between the measured capacitance and the relative permittivity (dielectric

constant) of the material, the lack of need to access the central conductor of the wire, and

independence of the measured capacitance on the applied voltage. A basic parallel-plate ca-

pacitor is shown in Figure 1.1(a) where the electric field lines are completely parallel to each

other and perpendicular to two parallel plate electrodes [3]. As the parallel plates are manip-

ulated onto the same plane in Figure 1.1, the electric field fringes outward into the dielectric

medium of interest. In [4] a simple coplanar electrode pair, shown in Figure 1.2, is examined in

which an alternating, yet quasistatic, excitation potential is placed on a source electrode and

the current through the receiver electrode is measured. The phase difference and magnitude of

the potential and current determine the complex impedance, the reactive component of which

yields the measured capacitance provided that the operating frequency is known. An important

observation is made in [5] that a sinusoidal variation of the electric field in the plane of the
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Figure 1.1 Progressive transformation of (a) a basic parallel plate capacitor into (c) a coplanar

capacitive sensor [3].

Figure 1.2 A circuit schematic of a basic capacitance measurement of two coplanar electrodes

whereby an alternating electric potential V on the source electrode excites a cur-

rent I through the receiver electrode [4]. The calculated complex impedance and

operating frequency then determine the capacitance.

electrodes must be accompanied by an exponentially-decaying field in the direction orthogonal

to the plane, according to the particular solution to the Laplace equation.

An analytical formula is given in [6] to solve for the capacitance as a function of the width

and separation of the two electrodes and the thickness and permittivity of two finite dielectric

layers. In this case, shown in Figure 1.3, the theoretical model is comprised of two perfectly

conducting electrodes of infinitesimal thickness, width s, spacing 2g, dielectric layers of heights

h1 and h2 from the electrode surface, and relative permittivity values of εr1 and εr2, respectively.

The solution per unit length is given by [6] as

C = ε0εeff
K(k′0)

K(k0)
, (1.1)
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where ε0 is the permittivity of free space and K(k) is the complete elliptic integral of the first

kind, given by

K(k) =

π/2ˆ

0

1√
1− k2 sin2 θ

dθ, (1.2)

k is the modulus of the integral, given by

k0 =
g

s+ g
(1.3)

k′0 =
√

1− k2
0, (1.4)

and εeff is the effective permittivity beneath the surface of the electrodes, given by

εeff = 1 + (εr1 − 1)q1 + (εr2 − εr1)q2, (1.5)

where

qi =
1

2

K(k′i)K(k0)

K(ki)K(k′0)
, i = 1, 2 (1.6)

ki =
tanh

(
πg
2hi

)
tanh

(
π(s+g)

2hi

) , i = 1, 2 (1.7)

and

k′i =
√

1− k2
i , i = 1, 2. (1.8)

This simple two-element structure can also be modeled as two capacitors in parallel, with one

being the capacitance between the electrodes surrounded by free space and the other being a

half-space of permittivity εr1 − 1 [7].

The simple coplanar electrode pair can be expanded to an array, most often called interdigi-

tal electrodes, whereby many parallel electrode fingers, or digits, are coplanar with one another.

This structure, shown in Figure 1.4, has the advantage being less susceptible to external noise

while also greatly increasing the capacitance. In [8] the interdigital array is modeled by a

series of capacitors that represent the half capacitance between a particular electrode and the

zero-potential plane between two neighboring oppositely-charged electrodes. From this basic

model, an analytical formula was developed that is a function of the spatial periodicity of the

electrodes and the total electrode metallization ratio as well as the thickness and permittivity
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Figure 1.3 A coplanar capacitive sensor modeled over two dielectric layers of finite thickness h1

and h2 and permittivity values ε1 and ε2, respectively. The two infinitesimally-thin

electrodes each have a width s and are separated by a distance of 2g [6].

Figure 1.4 Layout of a planar interdigital capacitive sensor, comprised of two electrodes of

opposing polarities, +V and −V , with a number of interlocking “digits” of width

W , spacing G, length L, and spatial periodicity λ [8].

of the interrogated layers. Interdigital array performance and potential applications are inves-

tigated in [3]. Capacitive sensors in general are particularly useful as moisture and rain sensors

[9] and as embedded or external monitors of the polymeric curing process [10].

For test-pieces that are of cylindrical geometry, a numerical calculation method was devel-

oped in [11] that utilizes cylindrical Green’s functions and the Method of Moments to solve for

the electrode charge distribution and, hence, the total capacitance. The electrodes themselves

consist of two curved patch-electrodes that conform to the surface of an infinitely-long dielec-

tric rod. A perfectly-conducting central conductor core is added to the dielectric rod in [12]

to create a geometry that most closely resembles that of a real wire. Empirical and analytical
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formulae are developed for determining the capacitance of a planar interdigital array that is

used in [13] to detect damage in power system cable insulation.

Wire insulation degradation is also shown in [12] to be detected as a measurable change in

the electrical permittivity of the insulation. Real insulation has, in fact, a complex permittivity,

defined as ε* = ε′−jε′′, arising from the fact that real insulation is not a perfect insulator. The

real (ε′) and imaginary (ε′′) components of complex permittivity are derived from Maxwell’s

law of total currents, which is given in the following time-harmonic form and assuming no

frequency-dependent relaxations:

Jt = Jc + Jd = σE + jωε′E = jωε0

(
εr − j

σ

ωε0

)
E, (1.9)

where Jt is the total current density, Jc is the conduction current density, Jd is the displace-

ment current density, j =
√
−1, σ is the conductivity, and ω is the angular frequency. From

this law, the real component of permittivity is thus defined as ε′ = εrε0, where εr is the rela-

tive permittivity of the material and ε0 is the permittivity of free space, while the imaginary

component is defined as ε′′ = σ/ω. By subjecting wire insulation to periods of extremely high

temperatures, such as may occur onboard an aircraft, it is shown in Figures 1.5(a) and 1.5(b)

that both components of the complex permittivity exhibit an increase with increasing exposure

time and temperature. Permittivity changes also occur due to exposure to various types of

fluids and due to mechanical stress, both of which are likely conditions on board an aircraft

[14]. It is, therefore, the goal of the research presented in this thesis, and of future work, to de-

sign a sensor capable of detecting such changes in the permittivity in the form of a measurable

changes in the sensor capacitance and dissipation factor (discussed in Chapter 3).

1.3 Thesis structure

The research presented in this thesis is divided among three core chapters that are intended

to show a progressive approach toward the final design of a new sensor that can detect unde-

sirable changes in the insulation of wires. In Chapter 2, theoretical investigations of a long,

dielectric-coated conductive circular cylinder embedded in a static and uniform electric field

oriented perpendicular to the cylinder axis are conducted to determine the response of that
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(a) Real part (b) Imaginary part

Figure 1.5 Inferred complex insulation permittivity of thermally exposed MIL-W-81381/12

wires. Error bars denote standard deviation of six measurements [12].

field to the presence of the cylinder. This electric field is a simplified analytical model that

represents the cylindrical geometry and symmetrical nature of two sources of opposite polarity

placed on opposite sides of a wire, much like two electrodes placed in the same locations. The

effect of a varying central conductor electric potential on the electric field, and the capacitance

of a system in which identical series capacitors are separated by a varying potential are also

investigated.

Extant methods of wire insulation characterization are employed experimentally in Chap-

ter 3. The most widely and currently used method is resistance testing, measured with an

instrument known simply as an insulation tester, and was tested on 17 wire samples removed

from a retired aircraft for the purpose of determining ionic and dipole absorption indicators of

degradation within the insulation. On these same wires, insulation capacitance and dissipation

factor was measured utilizing a curved patch-electrode capacitive sensor.

Finally, Chapter 4 discusses a new cylindrical interdigital capacitive sensor that was de-

signed to achieve a higher signal-to-noise ratio and greater circumferential coverage of the wire

insulation than the curved patch-electrodes. For this new electrode configuration, the electro-

quasistatic theory is developed, benchmark experiments were performed, and the penetration

depth of the electric field into the insulation optimized.
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CHAPTER 2. ELECTRIC FIELDS AND CAPACITIVE EFFECTS OF A

CHARGED DIELECTRIC-COATED CONDUCTIVE CYLINDER

2.1 Introduction

In the field of nondestructive evaluation (NDE), recent developments have advanced the

usage of capacitive sensors for insulating or dielectric materials. These sensors use electrodes,

placed on the test piece, to measure the sensor capacitance in the area of interest. Degradation

or damage to the insulating test piece will change the local relative permittivity of the material,

allowing the change to be measured as a change in sensor capacitance. For example, two

electrodes placed across an insulated wire will result in a measured value of capacitance that

depends upon the the permittivity of the insulation, the diameters of the central conductor

and the surrounding insulation, and the geometry of the electrodes [1].

During the course of this research, a question was raised as to how an electric potential

on the central conductor of the wire-under-test would affect capacitance measurements. This

situation could arise when testing wires onboard an airplane that cannot be de-energized for a

variety of reasons. A mathematical analysis was performed to investigate this concern and any

possible measurement ramifications. From the electric field analysis conducted in the following

section, it was determined that a charged conductor indeed creates an imbalance of charges on

the electrodes, but whether the total capacitance is affected was the main question.

Although the capacitance of the test piece can be used to detect a flaw or location of

degradation, it would also be of interest to plot the response of the locally-generated electric

field due to the presence of the flaw or degradation. It is, therefore, informative to consider

the case of dielectric-coated conductive cylinder embedded in a static and uniform electric field

that represents the field generated by two remotely-located source electrodes on opposing sides
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Figure 2.1 Cross-section of dielectric-coated conductive cylinder placed in a uniform electric

field E.

of the cylinder. This conductor may be energized, such as in a real-world case, and thus the

electric potential of which must be considered. Because there are two sources generating two

different electric fields in this example - the external electric field and the conductor - the

following derivations deal with each source separately and are then superimposed to generate

the final field. Effects on the capacitance of a generic symmetric capacitive sensor from this

central source is also discussed in a thought experiment.

2.2 Dielectric-coated, uncharged cylindrical conductor in a uniform

electric field

2.2.1 Polar solution to the Laplace equation

Consider a cylinder, with its axis along the z-axis, comprised of a perfect electrical conductor

(σ → ∞) of radius a held at zero potential and a surrounding dielectric layer of relative

permittivity ε2 and radius b, placed in a dielectric medium of permittivity ε3 in which exists

a uniform electric field defined as E = E0x̂. This field is theoretically generated by infinitely-

large parallel plate electrodes that are spaced apart at a finite distance. The introduction of

this cylinder, a cross-section of which is shown in Figure 2.1, to the infinite region disturbs the
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original electric field and leads to three different regional electric fields. These fields can be

found using the relationship between the electric field and electrostatic potential Ψ, expressed

as

E = −∇Ψ. (2.1)

Ψ is found by solving Laplace’s Equation expressed by

∇2Ψ = 0, (2.2)

which, in polar coordinates, is written as

1

ρ

∂

∂ρ

(
ρ
∂Ψ

∂ρ

)
+

1

ρ2

∂2Ψ

∂φ2
= 0. (2.3)

Ψ can be re-expressed, as in [2], using the standard separation of variables as a product of

functions of ρ and φ,

Ψ(ρ, φ) = P (ρ)Φ(φ), (2.4)

which, when divided into (2.3) and the result multiplied by ρ2, yields

ρ

P (ρ)

d

dρ

(
ρ
dP (ρ)

dρ

)
= − 1

Φ(φ)

d2Φ(φ)

dφ2
. (2.5)

Equation (2.5) can only be true if both sides are equal to a constant, which for convenience we

choose m2, and this leads to both sides being expressed separately as

d

dρ

(
ρ
dP (ρ)

dρ

)
− m2

ρ
P (ρ) = 0 (2.6)

d2Φ(φ)

dφ2
+m2Φ(φ) = 0 (2.7)

When (2.7) and (2.6) are solved for Φ(φ) and P (ρ), respectively, it can be shown that

P (ρ) =


Cρ0 + C ′ρ0 ln ρ, m = 0

Cρmρ
m + C′ρ

m
ρm , m > 0

(2.8)

Φ(φ) = Cφm cos(mφ) + C ′φm sin(mφ) (2.9)

When (2.9) and (2.8) are combined as required in (2.4), the general solution becomes

Ψ(ρ, φ) = Cρ0 + C ′ρ0 ln ρ+
∞∑
m=1

(
Cρmρ

m +
C ′ρm
ρm

) [
Cφm cos(mφ) + C ′φm sin(mφ)

]
. (2.10)
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For this particular problem, Cρ0 must equal zero to guarantee that the electric field approaches a

constant as ρ→∞. Since there is no net charge on the conductor, C ′ρ0 is also zero. In addition,

|E| must approach E0 as ρ→∞ and, therefore, m can only equal 1. Finally, since the electric

field is directed along the x-axis and the cylinder is located at the central point between the

remote sources, the potential along the y-axis must equal 0. As such, the coefficient C ′φm must

equal 0. With these conditions defined, the the solution for the potential in regions 2 and 3

can be expressed as

Ψ(ρ, φ) = −
(
K1ρ+

K2

ρ

)
cosφ. (2.11)

Using this solution, the potentials of the three regions, with the conductor of region 1 set to

zero potential, can be defined [3] as

Ψ1 = 0. (2.12)

Ψ2 = −
(
Aρ+

B

ρ

)
cosφ, (2.13)

Ψ3 = −
(
E0ρ+

C

ρ

)
cosφ, (2.14)

2.2.2 Calculation of the electric fields

With the electrostatic potential at each point within the three regions now expressed, the

electric field within the three regions can be determined using (2.1), which is expressed in polar

coordinates as

−∇Ψ = −∂Ψ

∂ρ
ρ̂− 1

ρ

∂Ψ

∂φ
φ̂. (2.15)

Applying this operation to (2.12), (2.13) and (2.14) yields the following respective regional

electric fields:

E1 = 0 (2.16)

E2 = ρ̂

(
A− B

ρ2

)
cosφ− φ̂

(
A+

B

ρ2

)
sinφ (2.17)

E3 = ρ̂

(
E0 −

C

ρ2

)
cosφ− φ̂

(
E0 +

C

ρ2

)
sinφ (2.18)

The coefficients A, B and C contain the geometrical and material properties of the three

regions and their effects on the adjacent regions. These can be determined by first applying
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the following interface conditions:

Ψ1

∣∣∣∣
ρ=a

= Ψ2

∣∣∣∣
ρ=a

(2.19)

Ψ2

∣∣∣∣
ρ=b

= Ψ3

∣∣∣∣
ρ=b

(2.20)

ε2E2ρ

∣∣∣∣
ρ=b

= ε3E3ρ

∣∣∣∣
ρ=b

, (2.21)

which generate the following expressions:

A = −B
a2

(2.22)

Ab+
B

b
= E0b+

C

b
(2.23)

ε2

(
A− B

b2

)
= ε3

(
E0 −

C

b2

)
. (2.24)

Three equations and three unknowns allows the final calculation of the three unknown coeffi-

cients, expressed as

A = −E0b
2 2ε3
ε3(a2 − b2)− ε2(a2 + b2)

(2.25)

B = E0b
2 2ε3a

2

ε3(a2 − b2)− ε2(a2 + b2)
. (2.26)

C = E0b
2 ε3(a2 − b2) + ε2(a2 + b2)

ε3(a2 − b2)− ε2(a2 + b2)
(2.27)

With the three coefficients now known, the electric field intensity can be determined at any

point within the three regions.

2.2.3 Numerical evaluation

Suppose an infinite region of air (εr1 = 1) is initially influenced by a static electric field

intensity of 100 V/m in the x-direction. A cylinder with two concentric regions is then placed

with its length along the z-axis of region 3. The inner concentric region, region 1, is an

uncharged perfect electrical conductor (σ →∞) with a 5 mm radius while region 2 is a dielectric

layer with a 10 mm radius and dielectric constant of 10. To determine the new electric potential

and field intensity at any point within the three regions, the coefficients A, B and C must be

calculated according to (2.25), (2.26) and (2.27). These are found to be A = 15.09, B =

−377.4× 10−6 and C = −8.867× 10−3.
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Figure 2.2 Cross-section of electric field response to an uncharged dielectric-coated conductive

cylinder embedded in a uniform electric field. The uniform field magnitude is 100

V/m. The green and red circles denote the interfaces at a = 5 mm and b = 10

mm, respectively. For a ≤ ρ ≤ b the relative permittivity is 10 and for ρ ≥ b the

relative permittivity is 1.

To verify that these coefficients are correct, one must place the coefficients into the boundary

conditions of (2.19), (2.20) and (2.21). It can now be seen that the electrostatic potential at

ρ = a is 0, the potentials of regions 2 and 3 are both equal at ρ = b, and the normal (ρ̂)

component of the electric flux density field D is equal in both regions at the boundary ρ = b.

Another useful boundary condition check not listed above is the tangential component of the

electric field intensity at boundary of regions 2 and 3. One can see that the φ̂-component of E

at ρ = b is equal between the two regions.

With the coefficients A, B and C calculated and the electric field intensity at every point

within each region calculated, the electric field now may be plotted in each region, and is shown

in Figure 2.2. As can be seen in the plot, the electric field lines appear to be attracted to the

outer surface of the cylinder, due to the combined internal properties of the conductor and the

dielectric layer, which has a higher permittivity than the surrounding air. The field lines that

are obliquely incident upon the dielectric layer are transmitted at a different angle upon entering

the dielectric while the single normal line along the x-axis remains normally transmitted. Inside

the dielectric, the electric field is less intense at every point than the exterior because of its
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higher permittivity. Note that most of the field lines within the dielectric terminate normally

upon the surface of the conductor due to the condition at this interface setting the tangential

electric field equal to zero. With this configuration, the electric field is most intense at the

points (ρ, φ) = (10, 0) and (10, π) with a magnitude of 103.8 V/m.

2.3 Charged dielectric-coated conductive cylinder with zero external

electric field

Solving for the electric field generated solely by the charged central conductor involves the

same process as in the case of the uncharged central conductor, Section 2.2, with the exception

of the absence of the external electric field and the introduction of a constant potential ΦC

in region 1. With the absence of the external electric field, the potential in (2.10) now has

complete circular symmetry, resulting in Cφm = C ′φm and the elimination of the dependence of

the potential on φ. Therefore, the general solution of the potential for the uncharged cylinder

becomes

Ψ(ρ) = K1ρ+
K2

ρ
. (2.28)

As ρ → ∞, K1 must equal zero for region 3. Because there are three regions that require

definition of the potentials, these potentials should have the form

Ψ1 = ΦC (2.29)

Ψ2 = Lρ+
M

ρ
(2.30)

Ψ3 =
N

ρ
(2.31)

By (2.1), the electric fields can then be expressed as

E1 = 0 (2.32)

E2 = ρ̂

(
M

ρ2
− L

)
(2.33)

E3 = ρ̂
N

ρ2
, (2.34)
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Figure 2.3 Cross-section of electric field generated by a charged dielectric-coated conductive

cylinder embedded in an air region. The potential of the conductor in the region

ρ < a is 1 V. The green and red circles denote the interfaces at a = 5 mm and

b = 10 mm, respectively. For a ≤ ρ ≤ b the relative permittivity is 10 and for

ρ ≥ b the relative permittivity is 1.

where the coefficients L, M and N can be solved for using the interface conditions in (2.19),

(2.20) and (2.21):

L = aΦC
ε3 − ε2

ε3(a2 − b2)− ε2(a2 + b2)
(2.35)

M = −ab2ΦC
ε3 + ε2

ε3(a2 − b2)− ε2(a2 + b2)
(2.36)

N = −2ab2ΦC
ε2

ε3(a2 − b2)− ε2(a2 + b2)
(2.37)

For the same cylinder with the same parameters as in the uncharged cylinder case and with

ΦC = 1 V, the charged cylinder constants are evaluated as L = 33.96, M = 4.151 × 10−3 and

N = 7.547 × 10−3. Vector and magnitude plots of the electric field are shown in Figure 2.3.

It is worth noting from the figure that the electric field is strongest just outside the interface

ρ = a, with a value of 132.1 V/m, as should be expected. Within the dielectric layer, the

electric field decays toward a value of 7.547 V/m as ρ → b, but just beyond the interface at

ρ = b the electric field experiences a jump to 75.47 V/m due to the dielectric discontinuity.
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2.4 Charged dielectric-coated conductive cylinder embedded in a uniform

electric field

With the external field response to the uncharged cylinder, Section 2.2, and the generated

field from the charged cylinder, Section 2.3, completely determined at every point, the two

fields can now be superimposed to yield the total electric field. The field expressions for the

three regions now hold the final form of

E1 = 0 (2.38)

E2 = ρ̂

[(
A− B

ρ2

)
cosφ+

M

ρ2
− L

]
− φ̂

(
A+

B

ρ2

)
sinφ (2.39)

E3 = ρ̂

[(
E0 −

C

ρ2

)
cosφ+

N

ρ2

]
− φ̂

(
E0 +

C

ρ2

)
sinφ. (2.40)

Figure 2.4 shows vector and magnitude plots of the total electric field for a cylinder with a = 5

m, b = 10 m, εr2 = 10, and ΦC = 1 V embedded in an air space with εr3 = 1 and E0 = 100

V/m directed in the x-direction. It may now be easily seen that the introduction of an electric

potential on the central conductor will imbalance the magnitude of the electric fields between

both sides of the y-axis. This is because the fields generated by the conductor in the positive

x-region constructively combine with those of the external field while those in the negative x-

region deconstructively combine. There is now a single maximum of the electric field occurring

in region 3 at (ρ,φ) = (10,0) with a value of 179.3 V/m.

2.5 Effect of charged central conductor on the capacitance

In order to understand the effect of a charged central conductor on the capacitance of two

patch electrodes, discussed further in Section 3.3.1, that are in contact with opposite sides of

a wire, a simplified analysis is performed here that relies upon the cross-sectional symmetry of

the electrode configuration. Because of the cross-sectional physical symmetry of the wire and

electrodes, the electrostatic behavior of the system can be illustrated by a thought-experiment

in which two parallel-plate capacitors are connected in series, with a variable center voltage,

as shown in Figure 2.5.
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Figure 2.4 Cross-section of electric field generated by a charged dielectric-coated conductive

cylinder embedded in a uniform electric field. The potential of the conductor in the

region ρ < a is 1 V and the uniform field has an intensity of 100 V/m. The green

and red circles denote the interfaces at a = 5 mm and b = 10 mm, respectively.

For a ≤ ρ ≤ b the relative permittivity is 10 and for ρ ≥ b the relative permittivity

is 1.

The voltages VU and VL represent those on the upper and lower curved patch electrodes,

respectively, applied to the dielectric insulation layer of a wire. The voltage VC represents the

voltage on the wire central conductor. The total capacitance CT of the system can be described

as two capacitors connected in series, defined as

CT =
1

1
C1

+ 1
C2

, (2.41)

where C1 and C2 are the capacitances of the upper and lower pairs of parallel plates, respec-

tively, shown in Figure 2.5. Each parallel plate capacitance is also given by the general charge

separation equation

Ci =
Qi
Vi
, i = 1, 2 (2.42)

where Q is the total charge of each capacitor and V is the voltage between the plates. Each

capacitance can then be defined as

C1 =
Q1

V1
=

Q1

|VU − VC |
(2.43)
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Figure 2.5 Two capacitors, C1 and C2, in series with a variable center voltage VC .

and

C2 =
Q2

V2
=

Q2

|VL − VC |
. (2.44)

Substituting these relationships into (2.41),

CT =
1

V1
Q1

+ V2
Q2

. (2.45)

From this equation, it is apparent that the voltages depend upon VC but the charges remain

unknown. One can find the general charge solution by utilizing Gauss’ law, defined as

Q =

‹
D · dS = ε

‹
E · dS, (2.46)

where D is the electric flux density, E is the electric field intensity, dS is a differential surface

element of the plates, and ε is the permittivity of the dielectric between the plates, which is

assumed to be the same for both capacitors. Assuming no fringing fields, the magnitude of

both D and E are uniform in the volume between the plates, such that

|D| = ε|E| = ε∇V = ε
V

d
, (2.47)

where d is the distance of separation between the plates, and by substituting this relationship

into (2.46), the charge Q for each capacitor becomes

Qi = εiAi
Vi
di
, i = 1, 2. (2.48)
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Finally, one can use this definition of the charge in (2.45) as

CT =
1

V1
ε1A1V1
d1

+ V2
ε2A2V2
d2

=
ε1ε2A1A2

ε1d2A1 + ε2d1A2
, (2.49)

where ε1 and ε2 are the permittivity values, A1 and A2 are the plate areas, and d1 and d2 are

the plate separations of the upper and lower capacitors, respectively. As is seen in (2.49), a

variable central conductor voltage will have no effect on the total capacitance of the system

due to the fact that the charge is a function of the applied voltage, which is canceled out of the

relationship and leaves only the permittivity, area, and plate separation dependencies. This is

an important piece of information for real-world capacitance measurements onboard aircraft in

that wires need not be de-energized for an accurate reading.
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CHAPTER 3. WIRE TEST SPECIMEN CHARACTERIZATION USING

RESISTANCE AND CAPACITANCE MEASUREMENTS

3.1 Introduction

Insulation testers are among the most common instruments currently used to determine

the viability of wire insulation. A current-carrying wire is usually a good conductor, typically

copper or aluminum, enclosed by one or several protective insulation layers, which are exposed

to the outside world. As such, no insulation layer is a perfect insulator and becomes even less

so over time due to the presence of extreme temperatures, moisture, and corrosive chemicals.

For certain types of degradation, the insulation can actually become more conductive to free

charges, leading to a potentially dangerous situation in critical systems, such as aircraft, where

an electrical arc can jump through the degraded insulation from the wire conductor to another

conductor of differing potential, which can cause system shutdowns or fires.

According to [1], applying a voltage step across a segment of wire insulation results in the

flow of a current through the insulation that can be decomposed into three components, as

shown in Figure 3.1:

1. Capacitance charging current - initially high and decays to zero after a few milliseconds;

depends upon permittivity, area of electrode contacts, and thickness of insulation.

2. Absorption current - also initially high and decays to zero after the charging current has

significantly decayed; the result of a lossy dielectric medium [2].

3. Leakage current - initially zero and tends to a constant value once the charging and

absorption currents have vanished; depends upon the conductivity of the insulation.

These individual currents are not easily discriminated by most insulation testers and, as a
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Figure 3.1 Component currents that flow through wire insulation during a typical resistance

test [1].

result, are measured by the tester as a summation of the three, taking the form of a current

that is initially high and eventually converges to the steady-state leakage current value.

Although this type of testing is not suitable for the testing of wires onboard an aircraft,

due to the requirement of having access to the central conductor, a study was performed for

purposes of assessing the quality of information that could be obtained from a standard, off-

the-shelf tester. The associated resistance of the total leakage current was measured for 17 wire

samples retrieved from a retired aircraft, the specifications of which are given in Tables 3.1 and

3.2. A photo of a selection of these wires is given in Figure 3.2. The details of this experiment

are described in Section 3.2.

Although insulation testers are readily available on the commercial market to test wire

insulation resistance, a function of the conductivity, there are no products known to determine

the permittivity of wire insulation, the other key electrical and material property of insulation.

Because capacitance is directly related to permittivity, a capacitive sensor is therefore an ideal

choice for determining degradation effects on the insulation permittivity. Capacitance mea-

surements using curved patch electrodes were performed on the same 17 wire samples and the

experiments of which are described in Section 3.3.
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Table 3.1 Dimensions and insulation layer material of three different gauge aircraft wires of

type BMS-13-5.

Material 20 18 16

(AWG) (AWG) (AWG)

Copper diameter (mm) 0.9906± 0.051 1.2319± 0.064 1.3970± 0.076

PVC thickness (mm) 0.2159± 0.025 0.2191± 0.025 0.2413± 0.025

Glass braid thickness (mm) 0.2159± 0.025 0.2191± 0.025 0.2413± 0.025

Nylon thickness (mm) 0.1524± 0.025 0.1524± 0.025 0.1524± 0.025

Overall Diameter (mm) 2.159± 0.127 2.413± 0.127 2.667± 0.127

Figure 3.2 Photo of a selection of the 17 wire specimens. From left to right: wires I, M and

A. Note the severe discoloration in wire A, which was found to have been highly

degraded.

3.2 Insulation resistance tests

A Megger R© MIT 510 insulation tester was used to perform two types of tests, each described

in Sections 3.2.1 and 3.2.2, on 17 wire specimens provided by the project sponsor. Each test

was performed with one electrode clamped to the central conductor at all times while the other

electrode was clamped partially around the insulation, as shown in Figure 3.3.

3.2.1 Insulation resistance - single-measurement testing

An instantaneous value of insulation resistance can be measured as part of the standard

insulation resistance test. On each wire, measurements were made at 20 different locations, after

60 seconds of applying approximately 5.1 kV. At 60 s, the resistance has generally approached

a constant value that is inversely proportional to the leakage current through the insulation at
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Table 3.2 Descriptions and locations of 17 wire specimens of type BMS-13-5 removed from a

single retired aircraft. Note that AWG is the American Wire Gauge, a standard

unit of diameter. In this case, 20 AWG = 2.159 mm, 18 AWG = 2.413 mm and 16

AWG = 2.667 mm.

Wire Specimen Gauge Aircraft Location Qualitative Description

label # (AWG)

A 2 20 Right-hand aft landing gear Very brittle, yellow-brown

B Very brittle, brown

C Very brittle, yellow

D 4 20 Between forward pressure Slightly dirty, flexible, white

bkhd & left wing station 230

E 5 20 Forward pressure bulkhead, Slightly dirty, flexible, white

F unpressurized side

G

H

I 6 20 Between right front spar Clean, flexible, white

J and strut break

K

L 16 16 Between forward pressure Slightly off-white

bulkhead & right rear spar

M 23 18 Between strut break Very dirty, flexible, off-white

& engine #2 firewall

N 24 18 Unpressurized fuselage aft Clean, slightly discolored

of forward pressure bkhd

O 27 20 Between station 1179 Dirty, slightly discolored

P & rudder actuator

Q

the measurement point. For 10 measurements, the outer clamp electrode was moved along one

line parallel to the wire axis (i.e., at azimuthal angle φ = 0◦). For 10 further measurements,

the wire was rotated 90◦ and the procedure repeated. Reported results are the mean and one

standard deviation of these 20 measurements, shown in Figure 3.4. Wire specimen details are

listed in Table 3.2.

The most obvious observation from the data in Figure 3.4 is the extremely low resistance

values of wires A and B, both from specimen 2, which matches the qualitative observation

of the wires during testing, that all three wires from specimen 2 were extremely brittle, were

significantly discolored, and appeared to be in the poorest condition when compared to the

other specimens. It is also important to note that the standard deviation of the measurements,
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Figure 3.3 Experimental configuration for wire insulation tests with a Megger R© MIT 510

insulation tester. Test lead A clamps around the central conductor of the wire

while test lead B clamps around the outer insulation.

in this case, represents how much of the wire was in a specific condition. For example, wire

C had a higher mean resistance than the others in its specimen group, but the measurement

showed a large standard deviation, meaning the wire had some very “good” areas of insulation

and also very “poor” areas. Another point of important note is that the maximum measurable

resistance of the MIT 510 is 15 TΩ. Many of the resistance values taken during this test

were actually above this level, which prevents a measurable reading and therefore affects the

reliability of the displayed data in Figure 3.4. This issue is most apparent in wires D and

M, which consistently had values above 15 TΩ, and, as such, the zero standard deviation is

misleading. It can be deduced that, among this group of specimens, these two wires had the

lowest conductivity within the insulation layer.

3.2.2 Insulation resistance - timed testing

The dielectric absorption ratio, or DAR, as defined in [1], is the ratio of the insulation

resistance values at 60 s to those at 30 s. This ratio generally characterizes the absorption

current that flows through the insulation in the initial moments after application of the test

voltage. The DAR value essentially represents the ratio of the resistance associated with the

sum of the absorption and leakage currents at 60 s to that associated with solely the leakage

current at 30 s, which should increase during that time period, according to Figure 3.1. DAR

values of 1.0 to 1.2 indicate “questionable” insulators while values above 1.6 indicate “excellent”
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Figure 3.4 Resistance of wire samples at 60 s. The resistance level of each wire shown is the

average of the 20 points tested and the error bar represents ±1 standard deviation

of the 20 measurements. Wires D and M had all 20 measurement points out of the

15 TΩ range of the insulation tester, thus explaining the zero standard deviation.

insulation performance [1].

Measured DAR results are shown in Figure 3.5, again with each data column plotted as the

average of 20 measurements with a ±1 standard deviation error bar. In this test, the resistance

of many samples, especially at the 60 s measurement, exceeded the maximum 15 TΩ measurable

by the MIT 510. For this reason, DAR results for only five wires, comprising specimens 2 and

5, are shown. The DAR values for wires A and B, specimen 2, are low, between 1.0 and 1.2.

Hence, these would be classified as “questionable” insulators, as the resistance increased very

little between 30 s and 60 s. This result correlates with the findings of the standard resistance

measurement, shown in Figure 3.4. Wires C, E and F showed slightly higher DAR values,

between 1.2 and 1.3, which also correlate with the standard resistance test results. Accurate

DAR values for the better insulators may be obtained with a different insulation tester that

can apply a voltage higher than 5 kV and has the capability of measuring resistance values

greater than 15 TΩ.
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Figure 3.5 Dielectric absorption ratio (DAR) - the ratio of the resistance at 30 s to that at

60 s. The DAR of each wire shown is the average of the 20 points tested and the

error bar is ±1 standard deviation of the 20 measurements.

3.3 Capacitance measurements using curved patch-electrodes

For this experiment, the curved patch-electrode sensor presented in [3] is adopted as the

preferred insulation characterization method. Figure 3.6 shows the basic concept of the design,

which is composed of two conducting electrodes, each with length l in the in the longitudinal

direction and arc width w in the azimuthal direction.

Although the sensor is designed to measure capacitance, a function of the insulation per-

mittivity, real insulation is not a perfect insulator, as discussed in Chapter 1. Dissipation factor

D, also known as loss tangent, is the ratio of the imaginary component to the real component

of the complex permittivity,

D = tan δ =
σ

ωε′
. (3.1)

In capacitive measurements performed by an LCR meter, the dissipation factor is the ratio of

the real, or resistive, component of the impedance to the imaginary, or reactive, component.

This resistive component is known as the equivalent series resistance and is not simply the

resistance through the insulation because it depends on frequency, the real permittivity and the

real capacitance. Since research in [4] has shown that the imaginary component of permittivity

correlates with the level of degradation, the dissipation factor is conjointly measured with the

capacitance in this experiment.
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a

Figure 3.6 Curved patch-electrode capacitive sensor [3]. Electrode, central conductor and

insulation radii are denoted as ρ0, a and b, respectively. Each electrode has length

l and arc-width w = φ0 × ρ0, where φ0 is the electrode arc-angle.

3.3.1 Capacitive experiments

A patch-electrode test fixture, shown in Figure 3.7, was designed to support the two elec-

trodes for the purpose of making measurements on aircraft wires of three different gauges, the

parameters of which are shown in Table 3.1. Arc-shaped grooves were milled from the surface

of a pair of 20-mm-long Perspex R© acrylic blocks, with one groove for each gauge of wire. To

ensure that each groove would leave enough room for the electrodes and allow for changes in

the wire shape due to deterioration, the diameters for the 20 AWG, 18 AWG and 16 AWG wires

were oversized by one milling bit size above the diameters of the wires to 2.184 mm, 2.438 mm

and 2.705 mm, respectively.

A distance of 0.96 mm was designed as the spacing between the plates when fully clamped

around any of the wires although, as will be described later, this distance greatly depended on

the varying size of the actual wire. Conductive pins were fitted through the acrylic plates to

make contact with the surface of the grooves. The surface of each groove was coated with a

layer of silver paint to act as the curved patch-electrodes and making electrical contact with

the pins.
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Figure 3.7 Side view design plan of the curved patch-electrode test fixture.

As with the insulation resistance tests, each of the 17 wire samples, described in Table

3.2, were measured at 20 different points, with 10 measurements along the longitudinal axis at

angle φ and another 10 taken at φ+90◦. The capacitance and dissipation factor measurements

were taken using an Agilent E4980A Precision LCR meter with a connected Agilent probe

test fixture 16095A at an operating frequency of 1 MHz, each recorded measurement being the

average of 16 measured values computed by the LCR meter. An alternating current at 1 MHz

can be used in these measurements to approximate ideal direct current conditions because the

associated wavelength in free space is much larger than the length of the actual sensor. The

LCR meter was calibrated before taking the measurements to remove the resistive and reactive

contributions from the meter itself and from the connecting cable. This was completed using

the standard calibration procedure of placing a short and open across the leads of the probe

and setting those values in the LCR memory. Although it was intended to keep the plate

separation constant for this experiment, the widely-varying (and, in the case of specimen 2,

larger) diameters of the wires, which resulted from degradation, prevented consistent plate

separations. Instead, the acrylic plates were compressed for minimal plate separation so that

each patch electrode was made to be in as much intimate contact with the wire sample as

possible and the resulting plate separation was measured in each case. The results of the
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Figure 3.8 Capacitance of the wire samples measured using the curved patch-electrode sen-

sors. The capacitance of each wire shown is the average of the 20 points tested

and the error bar is ±1 standard deviation of the measurements.

capacitance and dissipation factor experiments are given in Figures 3.8 and 3.9, respectively.

The measured acrylic plate separations are given in Figure 3.10.

Though the capacitance results in Figure 3.8 do not clearly indicate damage, as expected

since other work in [4] suggest that degradation affects ε′ by only a few percent, this is most

likely the effect of the variations in the plate separations. Wires A, B and C have 9% lower

capacitance values yet also have the 30% larger plate separations than for the remaining wires,

the effect of which may be masking changes in ε′. The capacitance results also validate patch-

electrode numerical simulations in [3] that have shown that larger conductor diameters relative

to a constant outer dielectric radius result in larger capacitance. This effect is apparent in wires

L, M and N, which have relatively larger conductor diameters than those of the remaining wires.

The dissipation factor D in Figure 3.9 was expected to increase with greater degradation,

because the numerator of its ratio is proportional to ε′′, which has been shown in [4] to be one

key indicator of insulation degradation, increasing significantly with heat damage. The data

taken from this experiment once again demonstrate that specimen 2 has degraded significantly

when compared to the other wires, not only because D for specimen 2 is 48% higher than for

the others, but the measured standard deviation is much larger, which in this case indicates
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Figure 3.9 Dissipation factor of the wire samples using the curved patch-electrode sensors.

The dissipation factor level of each wire shown is the average of the 20 points

tested and the error bar is ±1 standard deviation of the measurements.

the magnitude of degradation as a function of position. As such, the dissipation factor data

reflect the same trend as the insulation resistance tester results given in Chapter 2.

Finally, it is important to discuss the statistical spread of the sensor plate separations s,

as indicated in Figure 3.7, when taking the capacitance measurements. In an ideal testing

scenario, the sensor would have been in complete intimate contact with the wire, leaving a

0.96 mm separation between the two acrylic plates. However, as shown in Figure 3.10, the

greatly expanded diameters of specimen 2, most likely a result of degradation, prevented the

attainment of the 0.96 mm goal, though the patch-electrodes could still enclose a majority of

the wire. The average plate separation of wires E through Q was 0.85 mm while for wires A

through C this was 1.1 mm, which is 30% higher than that of the other wires. This means

that the capacitance measurements may have been more sensitive to plate separation than to

permittivity changes while the dissipation factor differences in these two groups of wires are

far higher than 30% and still hold value in showing degradation changes in the permittivity.
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Figure 3.10 Measured sensor plate separation for each wire sample. The separation level of

each wire shown is the average of the 20 points tested and the error bar is ±1

standard deviation of the measurements.

3.4 Conclusion

Based on the results of the resistance tests, it may be concluded that standard insulation

resistance tests give a reasonable quantitative indication of wire insulation degradation. It is

also possible that DAR tests are good indicators of degradation, but testers with higher voltage

and resistance thresholds would be required for a definitive answer. It should be noted that the

resistance data appears to correlate closely with the visible and physical condition of the wires.

Apparent brittleness also appears to be a better indicator of poor insulation performance than

discoloration.

Capacitive sensors, in this case the curved patch-electrode sensor, do indeed indicate levels

of degradation in the form of increased dissipation factor. The standard deviation of these

measurements also indicates the existence of localized regions of degradation of various magni-

tudes. Degradation was also found to have swollen the diameters of the affected wires, which

requires any future sensor design of this type to adapt to keep the electrode plate separation

as consistent as possible between measurements. One final observation is the very low level of

the capacitance measurements in Figure 3.8, approximately 1 pF. Values this small are highly
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susceptible to noise and are difficult to measure accurately by the LCR meter. This provides

motivation for progressing to a sensor design utilizing interdigital electrodes, as discussed in

the next chapter.
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CHAPTER 4. A CYLINDRICAL INTERDIGITAL CAPACITIVE

SENSOR FOR DIELECTRIC CHARACTERIZATION OF WIRE

INSULATION

4.1 Introduction

Results from the curved patch-electrode experiments in Chapter 3 have indeed shown that

degradation affects the insulation of wires in quantities measurable by a sensor that is, in fact,

simply a capacitor. From the general equation of a parallel plate capacitor, C = εA/d, the

most basic capacitor requires two electrodes with area A separated by a distance d with a

material of permittivity ε in between the electrodes. The patch-electrode sensor is, essentially,

a parallel plate capacitor that conforms to the surface of a cylinder with a conductive layer in

the middle of the dielectric. The problem with this design, however, is that in order to increase

the measurable capacitance, which minimizes the measurement error, for a given dielectric

material, d must be decreased and/or A must be increased, which significantly decreases the

volume of insulation being sensed. A capacitance value in the range offered by the patch-

electrode configuration is susceptible to noise and falls within an accuracy range of the LCR

meter, approximately 0.3%, that is less than the optimal 0.1% [1].

The curved patch-electrode configuration also suffers from a disadvantage in which the

electric field is primarily concentrated in the gaps between the two electrodes, thus restricting

the sensitivity to these two relatively small regions. For example, if degradation is highly

localized, as was shown to be common in Chapter 3, the ability to detect small regions of

degradation would highly depend on the patch-electrode sensor’s azimuthal position. This

disadvantage can be significantly alleviated by replacing the patch-electrodes with an array

of interdigital electrodes, which increases the total volume of insulation being sensed. As
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mentioned in Chapter 1, an array of “interdigital” electrodes1 greatly multiplies the capacitance

of a single pair. Using the principle that the curved patch-electrodes conform to the surface of

a wire, the interdigital electrodes are conformed as well, and it is this concept that initiated

the research in the following sections.

This new cylindrical interdigital capacitive sensor also mitigates the problem of the variable

plate separation for wires of varying diameter, as discussed in Section 3.3.1. Most digit pairs are

separated by a fixed distance because they are permanently deposited to the flexible electrode

substrate. This means that the capacitance will not be significantly affected by a varying wire

diameter, allowing a more accurate comparison of wires of similar construction.

In this chapter, a theoretical model is developed to calculate the capacitance of a cylindri-

cal interdigital sensor that combines the advantages of a coplanar interdigital array with the

convenient cylindrical geometry of the curved patch-electrodes. This new cylindrical interdig-

ital sensor offers the improvement over the curved patch-electrodes that: a greater region of

the dielectric layer is sensed, the signal-to-noise ratio is substantially higher, and sensitivity to

permittivity changes is easily tunable. A method for optimizing the sensor penetration depth

is presented and benchmark experimental results show agreement with the numerical model to

within 5%.

4.2 Modeling

4.2.1 Sensor configuration

Figure 4.1 shows a perspective view of the configuration of the capacitive sensor. As this

sensor is designed to be affixed to two separate faces of a clamp that conforms to opposite sides of

a wire, the individual electrode digits are periodically spaced only around a half circumference of

the wire and exist on the other half circumference in mirrored positions yet opposing polarity.

Each half of the sensor is composed of NE positive or negative digits enclosed by NE + 1

negative or positive digits, guaranteeing an odd number of digits per half of the sensor and an

even number of total digits, defined, therefore, as NET = 4NE + 2. For one half of the sensor,

1The interdigital sensor is comprised of two electrodes of opposite polarity that are each divided into a number
of digits.
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Conductor Dielectric

Electrodes with 
opposite polarity

l

Figure 4.1 Cylindrical interdigital capacitive sensor configuration used in numerical modeling.

Blue and red electrodes indicate opposing polarity. Electrodes are interconnected

in practice, as shown in Figure 4.2.

each electrode has an arc-width w and arc-spacing s in the φ-direction, and length l in the

z-direction. There are, therefore, two gaps g that occur between the end digits of each half

of the sensor, which represent the discontinuity in full circumferential periodicity of the digits

that is likely to occur in the actual sensing clamp, and is given by g = πc− w − 2NE(s + w).

To charge each of the electrodes in the experiments discussed in Section 4.5, a thin 0.1 mm

power bus connects all positive electrodes together and all negative electrodes together. The

power bus, shown in Figure 4.2, is thinner than any of the electrodes and separated from the

digits by spacing somewhat greater than the electrode spacings s in order to reduce any stray

capacitance contribution to the overall measurement.

In the theoretical model, the wire itself is modeled as a cylinder that is infinitely long and

comprised of a central perfect conductor of radius a and two surrounding dielectric layers of

radii b and c, and permittivities ε1 and ε2, as shown in Figure 4.3. This cylinder is embedded in

an infinite region of permittivity ε3. In the experiments that follow, the two dielectric layers are

used to model a single insulation layer of a wire enclosed by the substrate layer that supports

the electrodes, but in practice wires have multiple insulation layers that could be modeled using

this method if the substrate layer contribution can be ignored.
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Figure 4.2 Planar schematic of a benchmark cylindrical interdigital sensor with total number

of digits NET = 22, w = s = 1.3 mm, and l = 20 mm. The arc-gap g depends

upon the dielectric cylinder radius b to ensure balanced sensor application to the

cylinder surface.

4.2.2 Derivation of two-layer cylindrical Green’s function

Knowledge of the electrostatic potential Ψ at a point (ρ, φ, z) due to a point charge placed

at (ρ′, φ′, z′) is required to calculate the capacitance of the sensor. The potential is then related

to the volume charge density ρv by Poisson’s equation [2]:

∇2Ψ = −ρv
ε
, (4.1)

where for electrodes on a cylindrical surface, ρv will reduce to a surface charge density σ.

In order to find a suitable solution to this inhomogeneous partial differential equation, the

electrostatic Green’s function G at a point (ρ, φ, z) due to a point charge placed at (ρ′, φ′, z′)

must be derived and employed, and is found by solving the following Poisson equation:[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2

]
G(ρ, φ, z) = −1

ρ
δ(ρ− ρ′)δ(φ− φ′)δ(z − z′). (4.2)
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Figure 4.3 Cross-section of the cylindrical interdigital capacitive sensor configuration used in

numerical modeling.

The general solution to this equation for both source and observation points exterior to the

cylinder is derived in [3] and is of the form:

G(r|r′) =
1

2π2

{ˆ ∞
0

G̃0(ρ, ρ′, κ) cos[κ(z − z′)] dκ (4.3)

+2
∞∑
t=1

cos[t(φ− φ′)]
ˆ ∞

0
G̃t(ρ, ρ

′, κ) cos[κ(z − z′)] dκ
}
, (4.4)

and for a central conductor that is perfectly conducting and surrounded by two concentric

dielectric layers, the Green’s function kernel G̃t in each region must have the general form:

G̃
(1)
t (ρ, ρ′, κ) = At(κ)[It(κρ)Kt(κρ

′)− αt(κ)Kt(κρ)Kt(κρ
′)], (4.5)

G̃
(2)
t (ρ, ρ′, κ) = Bt(κ)It(κρ)Kt(κρ

′)− αt(κ)Ct(κ)Kt(κρ)Kt(κρ
′), (4.6)

G̃
(3)
t (ρ, ρ′, κ) = It(κρ)Kt(κρ

′)− αt(κ)Dt(κ)Kt(κρ)Kt(κρ
′), (4.7)

where the superscripts (1), (2) and (3) denote regions a < ρ < b, b < ρ < c and ρ > c,

respectively,

αt(κ) =
It(κa)

Kt(κa)
, (4.8)

and It(κρ) and Kt(κρ) are the modified Bessel functions of the first and second kind, respec-

tively, of order t. Each of these kernels are composed of two terms that represent incident
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and reflected fields due to a point source external to the cylinder, with Ct(κ) and Dt(κ) acting

as reflection coefficients and At(κ) and Bt(κ) acting as transmission coefficients. These four

coefficients can be solved by applying four interface conditions:

G̃
(3)
t

∣∣∣∣
ρ=c

= G̃
(2)
t

∣∣∣∣
ρ=c

(4.9)

ε3
∂

∂ρ
G̃

(3)
t

∣∣∣∣
ρ=c

= ε2
∂

∂ρ
G̃

(2)
t

∣∣∣∣
ρ=c

(4.10)

G̃
(2)
t

∣∣∣∣
ρ=b

= G̃
(1)
t

∣∣∣∣
ρ=b

(4.11)

ε2
∂

∂ρ
G̃

(2)
t

∣∣∣∣
ρ=b

= ε1
∂

∂ρ
G̃

(1)
t

∣∣∣∣
ρ=b

. (4.12)

For an arrangement of electrodes on the surface ρ = c, the source and observation points exist

solely on this surface and are considered to be in region 3. As such, the only coefficient from

region 3 that needs to be utilized in Equation (4.3) is Dt(κ), which, by solving for the boundary

conditions, is given as:

Dt(κ) =
1

αt(κ)

ε1I
′
t(κc)Dt1(κ) + ε2It(κc)Dt2(κ)

ε1K ′t(κc)Dt1(κ) + ε2Kt(κc)Dt2(κ)
, (4.13)

where

Dt1(κ) = ε1[It(κc)Kt(κb)− It(κb)Kt(κc)][I
′
t(κb)− αt(κ)K ′t(κb)]

−ε2[It(κc)K
′
t(κb)− I ′t(κb)Kt(κc)][It(κb)− αt(κ)Kt(κb)], (4.14)

Dt2(κ) = ε2[I ′t(κc)K
′
t(κb)− I ′t(κb)K ′t(κc)][It(κb)− αt(κ)Kt(κb)]

−ε1[I ′t(κc)Kt(κb)− It(κb)K ′t(κc)][I ′t(κb)− αt(κ)K ′t(κb)], (4.15)

and I ′t(κρ) and K ′t(κρ) are the first derivatives of the modified Bessel functions, expressed as:

I ′t(κρ) =
d

dρ
It(κρ) = It+1(κρ)− t

κρ
It(κρ) (4.16)

and

K ′t(κρ) =
d

dρ
Kt(κρ) = Kt+1(κρ)− t

κρ
Kt(κρ) (4.17)
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Figure 4.4 Point source exterior to a conducting rod coated with two dielectric layers, assumed

infinitely long.

4.3 Numerical implementation

The total capacitance C between the electrodes is calculated in the following sequence. The

Green’s function for any pair of source and observation points on the outer dielectric surface

ρ = c derived in the previous section is used to set up the integral equations relating the Green’s

function and surface charge density with the potential in the Method of Moments (MoM) calcu-

lations. Because of the axisymmetry of the electrode arrangement, only the Green’s functions

for positive-positive and positive-negative source-observation point pairs, or vice versa, need

be calculated. Therefore, the surface charge density requires calculation on either the positive

or negative electrodes only. The total capacitance C is then calculated from

C =
Q

V
, (4.18)

where the total charge Q on either the positive or negative electrodes is obtained by integrating

the surface charge density over each electrode surface and V is the potential difference, or

voltage, between the electrodes.
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M

N

Figure 4.5 Discretization of the surface of a single digit into M elements in the φ-direction and

N elements in the z-direction, each with assumed constant surface charge density.

4.3.1 Calculation method

Figure 4.5 shows the discretization of a single digit surface into M ×N elements, each with

an assumed constant surface charge density. Each digit is discretized into M elements in the

φ-direction and N elements in the z-direction. The surface charge density on the Side 1 digits

is denoted as σn(φ′, z′) and that on the Side 2 digits as σn(φ′ + π, z′), where n is the digit

number. The potential Ψ at the observation point r = (c, φ, z) on the electrode surface can be

expressed by integrating (4.3) over the individual digit surfaces:

Ψ(φ, z) =
c

ε0

2NE+1∑
n=1

{
(−1)n+1

¨
Side 1

G(1)(r|r′)σn(φ′, z′) dφ′ dz′

+(−1)n
¨

Side 2
G(1)(r|r′)σn(φ′ + π, z′) dφ′ dz′

}
. (4.19)

In the MoM calculations, the following expansion is used to approximate the continuous

function σn(φ′, z′):

σn(φ′, z′) =
MN∑
j=1

σjbj(φ
′, z′), (4.20)

where σj is the unknown constant surface charge density on element j and bj(φ
′, z′) is the pulse

basis function

bj(φ
′, z′) =


1 on element j

0 elsewhere.
(4.21)
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To solve for the MN unknown coefficients σj , weighting functions wi(φ, z) are introduced to

force the boundary condition for the potential in (4.19) to be satisfied for each element on the

sensor surface. The point-matching method is utilized, in which the weighting functions are

Dirac delta functions:

wi(φ, z) = δ(φ− φi)δ(z − zi) on element i, (4.22)

where i = 1, 2, ..., L where L = MN . Discretizing the integral equation using weighting func-

tions in each of the L elements, (4.19) is expressed as the following matrix equation:

G11 G12 . . . G1L

G21 G22 . . . G2L

...
...

. . .
...

GL1 GL2 . . . GLL


×



σ1

σ2

...

σL


=



Ψ

Ψ

...

−Ψ


, (4.23)

where

Gij =
c

ε0

¨
element j

G(1)(ri|r′j)bj(φ′, z′)dφ′dz′. (4.24)

If a uniform mesh, whereby the dimensions of each element are the same, is used in the MoM

calculations, then (4.24) can be simplified as

Gij =
c

2π2ε0

{
∆φ

ˆ ∞
0

G̃
(1)
0 (κ) cos[κ(zj − zi)]

2

κ
sin

(
κ∆z

2

)
dκ

+2
∞∑
t=1

cos[t(φj − φi)]
2

t
sin

(
t∆φ

2

)
×
ˆ ∞

0
G̃

(1)
t (κ) cos[κ(zj − zi)]

2

κ
sin

(
κ∆z

2

)
dκ

}
, (4.25)

where ∆φ and ∆z are the width and length of each element in the φ- and z-directions, re-

spectively, and (φi, zi) and (φj , zj) are the center coordinates of the source and observation

elements, respectively. From (4.24) the surface charge density σn(φ′, z′) on one of the polarized

electrode arrays is solved, and that for the other electrode is simply −σn(φ′ + π, z′). The to-

tal charge Q on each polarized electrode array can be found by integrating σn(φ′, z′) over the

electrode array surface. The sensor output capacitance C is finally calculated through (4.18).
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4.3.2 Example calculations

When numerically evaluating the Green’s function matrix element in (4.25), the infinite

integrals and summation require finite truncation. Although the convergence of the integrand-

s depends on the cylinder and electrode geometry and dielectric layer contrasts, a typical

arrangement of electrodes is analyzed here to determine behavior of the integrands and trunca-

tion limits to achieve three significant figures of accuracy in the calculated capacitance output,

which is sufficient for comparison with the experimental data.

According to the formulation given in Section 4.3.1, the minimum total number of electrodes

NET is 6, and for a cylinder of real aircraft wire proportions, w = 0.1 mm, s = 0.6 mm, and

l = 25.4 mm. This cylinder has dimensions a = 0.4953 mm, b = 1.0795 mm, and a substrate

layer radius of c = 1.1049 mm. The cylinder and the substrate have relative permittivity

values of εr1 = 4.015 and εr2 = 2.84, respectively. The relative permittivity for the cylinder

was calculated as an average, or effective, permittivity, which is a function of the individual layer

thicknesses in Table 3.1 and the permittivity values for those layers at 1 MHz, given in [4]. For

all experiments described in this chapter, the number of elements in a direction per electrode

is M = N = 10. For the diagonal matrix components, where the source and observation

elements are collocated, the cosine terms in Equation (4.25) become unity, eliminating much

of the oscillatory behavior of the integrand and causing the integrand to converge to zero at a

much slower rate. Because of this, and to guarantee a well-conditioned matrix upon inversion,

the diagonal terms in the numerical evaluation require higher finite truncation values than the

off-diagonal terms (in these calculations, a factor of three is used).

Figure 4.6 shows the convergence behavior of the capacitance for the above described elec-

trode configuration as a function of the integral and summation truncation limits. From the

figure, it is observed that, for a given summation truncation number, the capacitance oscillates

and converges to a constant value as the integration limit increases, and for a given integration

limit, the capacitance decreases toward a constant value as the summation truncation number

increases. For a summation truncation number of 50 and integration limit of 6000, the output

capacitance has a reliable precision of 3 significant figures, which is also the apparent limit of
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Figure 4.6 Example of converging output capacitance as a function of integration limit and

number of terms in the summation(Σ) used in calculating the Green’s function of

Equation (4.25). In this particular case, a = 0.4953 mm, b = 1.0795 mm, and

c = 1.1049 mm. The cylinder and the substrate have relative permittivity values

of εr1 = 4.015 and εr2 = 2.84, respectively.

the measurement device accuracy described in Section 4.5. Therefore, 50 summation terms and

an integration limit of 6000 will be used in all calculations hereafter given in this chapter.

The dependence of the sensor capacitance on the various electrode configuration parameters

is investigated as follows. In Figure 4.7, the output capacitance is plotted as a function of the

insulation relative permittivity εr1 where different electrode configurations are considered. The

wire is again modeled as a cylinder with a = 0.4953 mm, b = 1.0795 mm and c = 1.1049 mm

with a substrate relative permittivity value of εr2 = 2.84. The default electrode configuration

is w = s = 0.1 mm, l = 25.4 mm and NET = 6. For any of the electrode configurations given in

the figure, a linear relationship between the capacitance and the permittivity is clearly observed.

This slope, ∆C/∆ε, can be viewed as the sensitivity of the capacitive sensor to changes in the

insulation permittivity and is given for each configuration in Table 4.1. It should be noted that

this definition of sensitivity has units of meters, which is related to the ratio of the area of the

electrodes to the distance between them. Increasing the length l of the electrodes by a factor

of 2 doubles the output capacitance and the sensitivity due to the doubling of the total charge.

Increasing the electrode spacing s by a factor of 2 decreases the output capacitance as would be
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Figure 4.7 Calculated sensor capacitance as a function of insulation permittivity. The default

sensor configuration is w = s = 0.1 mm, l = 25.4 mm, and NET = 6 unless

otherwise indicated in the legend.

Table 4.1 Sensitivity values of the electrode configurations given in Figure 4.7. The default

sensor configuration is w = s = 0.1 mm, l = 25.4 mm, and NET = 6 unless

otherwise indicated in the “Parameter” column.

Parameter ∆C/∆ε1
(mm)

Default 28.49

l = 50.8 mm 57.32

s = 0.2 mm 28.40

w = 0.2 mm 40.82

NET = 10 47.79

expected, but the sensitivity decreases only slightly, due to the effect of the penetration depth

that will be discussed in Section 4.4. Increasing the electrode width w by a factor of 2 also

doubles the total area of the electrodes allowing more charge to be stored, but the dimensions

of the interelectrode region remain the same and so the capacitance increases only slightly but

with higher sensitivity. Adding four more electrodes increases the total electrode area and

sensing area between the electrodes, which increases the total capacitance and sensitivity.
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4.4 Field penetration optimization

The cylindrical interdigital sensor described in this chapter has, up to this point, been

designed primarily for i) the smallest achievable measurement error of 0.1% in the LCR meter

measurements and ii) for greatest sensitivity to changes in permittivity of the entire insulation

layer. Here we consider another factor in the sensor design: the depth of penetration of the

electric field into the insulation layer. Penetration depth is commonly referred to as skin depth

in the interaction of a dynamic electric field with a lossy material, such as a real conductor,

and is defined as the distance into the conductor at which the magnitude of a transmitted

electromagnetic wave falls to 1/e (about 37%) of its value at the material boundary. In an

electrostatic or electroquasistatic interaction with a low-loss dielectric, however, penetration

depth must be defined differently.

4.4.1 Calculation method

Penetration depth is an important sensor characteristic when localized flaws could occur

at various depths or layers within the insulation of a wire. Also, because the electric field

generated by the interdigital sensor fringes between oppositely-charged electrodes and couples

perpendicularly to the central conductor, it is the goal to design the most efficient sensor that

balances both of these effects. Prior work in [5] defines the penetration depth for a coplanar

capacitive sensor (designed for characterizing flat, laminar dielectrics) as the thickness of the

dielectric material for which the measured capacitance has experienced a 10% change from the

constant value C0 measured on a half-space of the same material. In this case of a test-piece

with cylindrical geometry and central conductor, a similar definition of penetration depth δ

can be made as

δ = b− a10 (4.26)

where, referring to Figure 4.1, a10 is the radius of the central conductor for which the capac-

itance of the sensor has increased by 10% compared with that for a = 0, i.e. for the case in

which there is no central conductor. Essentially, δ represents the theoretical thickness of the

wire insulation by which the capacitance has increased by 10% from that for a = 0.
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Figure 4.8 Calculated C for sensors with several different total digits and electrode spacing

as a function of conductor radius a. In this case, b = 1.0795 mm, c = 1.1049 mm,

εr1 = 4.015, εr2 = 2.84, and w = 0.1 mm. The * on each plot indicates the point

where the capacitance has increased by 10% from C0.

To determine the effective penetration depth of an actual wire sensor, numerical simulations

were conducted on the theoretical wire described in Section 4.3.2 in which the radius of the

central conductor was varied from 0 to c while holding all other parameters constant. Because

the penetration depth of the interdigital configuration depends on the separation between the

electrodes, calculations were also conducted for five different values of s and NET . The results

of this simulation are shown in Figure 4.8.

Considering the data plotted in Figure 4.8 it can be seen that, as a vanishes, the total

capacitance approaches a constant value C0, which is to be expected since the electric field no

longer couples with the central conductor, leaving only the fringing field between neighboring

digits. This effect is illustrated in Figure 4.9(a), where the insulation thickness t is much greater

than the digit spacing s so that the field generated between the digits held at potentials of V+

and V− dominates any coupling with the central conductor held at a potential of 0 V. When

a → c, the capacitance tends toward infinity, which is characteristic of the inverse distance

relationship in a parallel plate capacitor, the field of which is illustrated in Figure 4.9(b). In

essence, a10 represents one point of balance between the fringing and parallel fields, illustrated

in Figure 4.9(c), and an most efficient sensor may be expected to have δ = t = b− a, where t is
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Figure 4.9 Schematic diagram showing the electric field coupling to a ground plane (here

representing the wire’s the central conductor at potential V = 0) as a function of

digit spacing s and insulation thickness t.

the thickness of the wire insulation. The data from Figure 4.8 are provided in detail in Table

4.2.

It is observed from this data that a10 → c as the spacing between the digits decreases,

meaning that the penetration depth also decreases. This is to be expected since a decreasing

electrode spacing will result in a greater concentration of the projected electric field nearer to

the surface coplanar with the electrodes. From Table 4.2 it can be seen from the penetration

efficiency δ/t that the most efficient sensor at penetrating the wire insulation is the one with the

greatest electrode spacing, however, at a significantly reduced output capacitance. Conversely,

the sensor with the greatest output capacitance will have the lowest penetration efficiency.

Ultimately, the chosen sensor design should be a balance between maximum capacitance and
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Table 4.2 Results of the penetration depth simulation in Figure 4.8.

NET = 6 10 14 18 30

C0 (pF) 1.56 2.99 4.63 6.76 14.0

C10 (pF) 1.72 3.29 5.10 7.44 15.4

a10/c 0.73 0.81 0.85 0.88 0.94

a10 (mm) 0.81 0.89 0.94 0.97 1.0

δ (mm) 0.27 0.18 0.14 0.11 0.06

δ/t (%) 47 32 24 18 11

penetration efficiency, which in this case would be any number of digits between 6, the min-

imum, and 30, the maximum considering manufacturing tolerances and the wire dimensions.

4.5 Experimental verification

4.5.1 Benchmark experiments

Benchmark capacitive experiments were carried out for the purpose of validating the mod-

eled results in certain cases. Four sets of planar interdigital electrodes, examples of which are

shown in Figures 4.10 and 4.2, were fabricated using photolithographic techniques by American

Standard Circuits, Inc. The electrodes were etched from a 17.8 µm thick bare copper cladding

deposited on a 100 µm thick Kapton R© polyimide film substrate to form a flat flexible sensor.

These sensors were then conformably fixed to the outer dielectric surface of three different

dielectric-coated conductive cylinders to form the cylindrical interdigital capacitive sensors. T-

wo sets of the sensors had differing electrode widths, w = s = 0.9 mm and 1.3 mm, with each

set having two electrode lengths, l = 20 mm and 40 mm. Based on the circumferences of the

dielectric-coated conductive cylinders and to maximize the number of digits, the sensors with

s = w = 0.9 mm are comprised of 30 total digits and those with s = w = 1.3 mm are comprised

of 22 total digits. These electrode configurations were designed to produce capacitance values

that, at 1 MHz, resulted in the best LCR meter instrument accuracy, lying in the approximate

range 0.1 to 0.3% [1].

Three 152.4-mm-long dielectric-coated conductive cylinders are used in the measurements



www.manaraa.com

53

Electrodes

Substrate

Dielectric
Layer

Conductive 
core

LCR Meter

Figure 4.10 Agilent E4980A precision LCR meter and Agilent probe test fixture 16095A used

for sensor capacitance measurements. Subfigure: photograph of the flexible rect-

angular planar electrodes fabricated using photolithography.

to simulate an infinitely long cylindrical dielectric rod. These cylinders were significantly longer

than the electrode lengths in order to legitimately neglect the edge effects during a measure-

ment. The three different dielectric materials were Tecaform
TM

acetal copolymer, cast acrylic,

and Teflon R© polytetrafluoroethylene (PTFE). The permittivity of each dielectric was measured

independently using a Novocontrol Alpha Dielectric Spectrometer at 1 MHz. The parameters

of these cylinders are listed in Table 4.3. It also merits mention that in order to maintain

exact electrode widths and spacings for cylinders of slightly varying radii, the arc-gaps g for

the 22-digit sensors were set to 3.3 mm, 3.1 mm, and 3.3 mm for Tecaform
TM

, acrylic, and

Teflon R© dielectric coatings, respectively. For the 30-digit sensors g was set to 4.5 mm, 4.3 mm,

and 4.5 mm for the same respective materials.

The planar interdigital electrodes were then conformally wrapped around the surface of

the dielectric cylinder with the bare copper facing outward to allow for easy contact with the

LCR meter, introducing the additional Kapton R© substrate layer of radius c. The edges of the

Kapton R© substrate were then tightly taped to each other to eliminate any air gap between the

dielectric and substrate layers as much as possible.

The sensor output capacitance was measured using an Agilent E4980A Precision LCR meter
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Table 4.3 Parameters of the dielectric-coated conductive cylinders used in benchmark ex-

periments. The permittivity was measured independently on disc-shaped polymer

samples, using a Novocontrol Alpha Dielectric Spectrometer [12].

Dielectric Conductor Dielectric Cylinder Measured

material radius a radius b length permittivity

(mm) (mm) (mm) at 1 MHz

Tecaform
TM

7.95 9.64 152.4 3.77

±0.005 ±0.015 ±0.05

Acrylic 7.95 9.59 152.4 3.02

±0.005 ±0.02 ±0.05

Teflon R© 7.95 9.66 152.4 2.21

±0.005 ±0.01 ±0.04

operating at 1 MHz. This frequency had a twofold benefit, the first being that the error listed

in the operating manual for a 10 pF measurement was approximately 0.1%, the minimum

possible. Secondly, the wavelength in free space, 300 m, is much greater than the length of

the electrodes, meaning that there are no nodes, standing waves, reflections, or phase delays

between the electrodes. Thus the quasistatic regime assumed in the numerical model is valid.

After calibration, each capacitance measurement was made by placing the LCR meter probe

points in contact with a pair of adjacent sensor digits. The LCR meter was set to display an

average of 16 measurements which were manually recorded. Although 7 significant figures

were displayed and recorded, only 3 were determined to be consistent and, therefore, accurate.

Measured values for each of the four sensor configurations are compared with the numerically

calculated values in Figs. 4.11 and 4.12. The mean agreement between the calculated and

measured values is 5%.
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Figure 4.11 Measured and calculated C for a 22-digit sensor as a function of electrode length

l. The plotted measurement values are an average of five measurements and the

error bar denotes ±1 standard deviation of these measurements.
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Figure 4.12 Measured and calculated C for a 30-digit sensor as a function of electrode length

l. The plotted measurement values are an average of five measurements and the

error bar denotes ±1 standard deviation of these measurements.
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4.6 Conclusion

A quasielectrostatic numerical model, based on the Green’s function due to a point source

exterior to an infinitely long cylindrical conductive cylinder coated with two different dielectric

materials, has been developed to quantitatively evaluate the permittivity of cylindrical test-

pieces. This model has been validated by large-scale benchmark capacitive measurements which

show agreement with the model to within 5%. Clamps with integrated interdigital sensors are

currently being developed that will be used to nondestructively evaluate wire insulation in

critical structures, primarily aircraft. The electrodes designed for these clamp fixtures have

undergone an optimization of the electric field penetration depth to make the sensor more

accurate and efficient at measuring degradation levels in wire insulation.
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CHAPTER 5. GENERAL CONCLUSION

5.1 Discussion

The research presented in this thesis is motivated by the need within the aerospace industry

to characterize wire insulation for the purpose of detecting poor insulators that may result in

dangerous situations in-flight. Extant resistive and capacitive characterization methods are

explored to determine the effectiveness and quality of the results in the measurement of their

respective parameters of resistance and capacitance. To better understand the electric field

distribution within and external to an insulated wire generated by capacitive electrodes, a sim-

plified analytical model was developed in Chapter 2 that includes a variable central conductor

potential. It was determined that this charged conductor will have no effect on the capacitance

because it depends only on the geometry and material properties of a symmetrical electrode

configuration. In Chapter 3, a description is given of resistance measurements taken with a

commercial insulation tester to determine the effect of degradation on the conductivity of the

insulation of 17 retired aircraft wire samples. The results showed significantly reduced resis-

tance measurements for wires that were qualitatively observed to be significantly degraded.

Timed resistance tests also showed that the insulation of these same wires fell into the cate-

gory of being “questionable”, as defined by the instrument test procedures, with DAR values

between 1.0 and 1.2, as opposed to wires classified as “good” with DAR values between 1.4

and 1.6. Curved patch-electrode capacitive sensors were also applied, as described in Chap-

ter 3, to the same 17 wire samples. The measured dissipation factor, defined as the ratio of

the imaginary to the real parts of the measured capacitance, in these experiments was found

to be significantly higher for the degraded samples than for the non-degraded samples and

showed a good pattern of agreement with the results of the resistance tests. A novel cylindrical
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interdigital capacitive sensor was developed and tested in Chapter 4, the motivation behind

which was to increase the signal-to-noise ratio, reduce the measurement error, and increase the

circumferential coverage of the sensor around a wire. Benchmark experiments performed on

large-scale dielectric-coated conductive cylinders delivered results that agreed to within 5% of

those generated by the numerical model also described in Chapter 4. A method for analyzing

the electric field penetration depth within the insulation was also developed. This was achieved

by varying the radius of the central conductor in the numerical model until it was “sensed” by

the interdigital electrodes.

5.2 Recommendations for future research

Interdigital capacitive sensors designed using the penetration depth optimization technique

are currently being developed for onboard aircraft testing an, ultimately, for use by aircraft

maintenance personnel. These sensors are to be affixed to hand-held clamps, shown in Figure

5.1, the jaws of which utilize the milled arc design of the patch-electrodes in Chapter 3 to

securely grasp the wire. These new interdigital clamp sensors will be tested on the same

17 wire samples described in Chapters 2 and 3 to assess the designed improvements in the

interdigital design.

For future experiments, it is also worth exploring the results achieved by sweeping through

a range of frequencies in the capacitive measurements instead of a single frequency. It is

known from research by Debye and many others that dielectric relaxations occur at specific

Figure 5.1 Plastic spring-loaded clamp with two orange jaws that will be used to support and

apply the interdigital electrodes to both sides of an aircraft wire.



www.manaraa.com

60

frequencies for specific polymers. Experiments in [1] show that thermal exposure causes changes

in the measured permittivity at different frequencies. This spectral analysis of wire insulation

could yield valuable new information and improve sensitivity in the detailed characterization

of specific types of wiring insulation in critical structures.
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